Chemical reactions in protoplanetary accretion disks II. Carbon dust oxidation

نویسندگان

  • F. Finocchi
  • W. J. Duschl
چکیده

This paper considers the gas phase chemistry in a protoplanetary accretion disk, especially the chemistry initiated in the gas phase by destruction of dust close to the central star. Slow radial particle transport moves gas and dust from the cold outer parts of a protoplanetary accretion disk into its warm central part where chemical reactions in the gas phase are activated. At the same time gases frozen on the surface of dust grains are vaporized and later the dust grains themselves are vaporized or destroyed by chemical surface reactions. In this paper we take into account oxidation processes of carbon dust by OH molecules and free O atoms. Oxidation by OH molecules turns out to be very efficient and strongly modify the hydrocarbon chemistry in the protoplanetary disk. Due to the slow conversion of hydrocarbons to CO at low temperatures we find that large amounts of methane and more complex organic molecules are formed in the region between the present positions of Venus and Mars. Closer to the protosun, these are converted into CO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of chemical reactions and dust destruction in protoplanetary accretion disks

This paper considers the gas phase chemistry in a protoplanetary accretion disk, especially the chemistry initiated in the gas phase by destruction of dust close to the central star. Slow radial particle transport moves gas and dust from the cold outer parts of a protoplanetary accretion disk into its warm central part where chemical reactions in the gas phase are activated. At the same time ga...

متن کامل

Effects of accretion flow on the chemical structure in the inner regions of protoplanetary disks

Aims. We have studied the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (∼ 100K) inner region of protoplanetary disks. Methods. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly through the evaporation of w...

متن کامل

Gas-phase CO in protoplanetary disks: A challenge for turbulent mixing

This is the first paper in a series where we study the influence of turbulent diffusion and advective transport on the chemical evolution of protoplanetary disks, using a 2D flared disk model and a 2D mixing gas-grain chemical code with surface reactions. A first interesting result concerns the abundance of gasphase CO in the outer regions of protoplanetary disks. In this Letter we argue that t...

متن کامل

Self-Sustained Ionization and Vanishing Dead Zones in Protoplanetary Disks

We analyse the ionization state of the magnetohydrodynamically turbulent protoplanetary disks and propose a new mechanism of sustaining ionization. First, we show that in the quasi-steady state of turbulence driven by magnetorotational instability in a typical protoplanetary disk with dust grains the amount of energy dissipation should be sufficient for providing the ionization energy that is r...

متن کامل

Gas and Dust Emission at the Outer Edge of Protoplanetary Disks

We investigate the apparent discrepancy between gas and dust outer radii derived from millimeter observations of protoplanetary disks. Using 230 and 345 GHz continuum and CO J=3-2 data from the Submillimeter Array for four nearby disk systems (HD 163296, TW Hydrae, GM Aurigae, and MWC 480), we examine models of circumstellar disk structure and the effects of their treatment of the outer disk ed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997